Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин a и b, при котором бо́льшая величина относится к меньшей, так же, как сумма величин к бо́льшей. Исторически изначально в древнегреческой математике золотым сечением именовалось деление отрезка AB точкой C на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей. Позже это понятие было распространено на произвольные величины.

Число, равное отношению a/b, обычно обозначается прописной греческой буквой Ф (фи), в честь древнегреческого скульптора и архитектора Фидия, реже — греческой буквой tau .

Для практических целей ограничиваются приблизительным значением Ф = 1,618.

Золотое сечение имеет множество замечательных свойств и возникает в разных задачах, в том числе в физике.

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.

Некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке.

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.

Узнать больше: ru.wikipedia.org